
Summary : A facile "one-pot" trarsforr.ation of bicyclic Xeto ester (2) to bisprotected 
i;l)-e_e~Ithierla~ycirl via cr.oi phosp:ha.te activation followed by the addition-elimination 
reaction of J-protect~cystealr.inE derivatives is described. 

Recently, an efficient and operatiorzlly e;impie syrrLhesis of (?)-thienamycin (1) from 

diethyl. I,?-acetor;edicarbox3'late which is adaptable to large scale manipulation was achieved'. 

Ar interesting, stereocontrolle3 synthesis of (+)-thienamycin starting from L-aspartic acid _ n 
ha.s also recently been nccompliahedL. Eozh approaches rely upon the same intermediate namely, 

(?R,&,BP,) e-nitrobenzyi 6-(l-~ydroxyethyl)-l-azabicy~lo(~~,;~,O)~eptar,-~,~-dione-2-carboxylate 

which is derived from the efficiert carberoid cyclization reaction of the corresponding diazo 
1 aster , This paper describes the methodology for a convenient transformation of racemic (jR,&, 

8s) bicyclic keto ester (2) to bisprote cted in)-e-epithienal.:yc:irl (5). 

The transformation of a hicyclic keto ester to a vinyl sulfide via az aidition-eiimination 

reaction using the vinyl tosylate as an activa-ted iztermediate <as initially applied to the 

cephalosporin derivative by Scartazzini and co-workers 3. _ ds &oxm in Scheme I. 'This approach bras 

Scheme I 

used in the total syntheses of northienamycin 
4 
,homothienamycin' and deshydroxyethylthienamycin 
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derivatives, This addition-elimir,ation reaction was investigated in depth using the model system 

(')-(5R,&,OS) bicyclic keto ester (2) uhich is a precursor of (?)-&epithiecamycin. 

Based on the synthesis of deshydroxyethylthienamycin", we anticipated the chemistry deve- 

loped for 2 should, in principle, be transferable to the keto ester which has the required 

(5R,&,8R) thienamycin stereochemistry and in fact this has recently been accomplished i,2 . The 

reaction of 2 with p-toluenesulfonic anhydride occured smoothly in acetonitrile in the presence 

of diisopropylethylamice to form en01 tosylate (3 ), kithout isolation of 3 , the solvent was 

displaced with N,N-dimethylformamide (DMF)', and futher reaction with N-phenoxyacetyl cysteamine - 

(da) 
8 
gave the desired bisprotected S-epithienamycin, (5a) mp 135-138 % (dec.) in 67 % 

42'21 



yield. The cysteamine derivative (4b) behaved similarly to Iormsb, mp 1R4-187*C (dec.) in 

85 $ yield, in addition, small amounts of by-products such as the pyrrole derivative (6a)9, 

monocyclic B-lactam (7a) and disulfide (8a) were isolated and characterized by 1 H and "C NM?+' 
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Since the above two step seyuence required two different solvents, it was difficult to 

handle on large scale. A single so1ver.t system for the transformation of 2 to 5 which would not 

entail the isolation of the reactive intermediate 3 was therefore desireable. The addition- 

elimination mechanism led us to consider the possibility of utilizing the enol triflate"* and 

enol phosphate" which have good anionic leaving groups. We felt that one or both of these 

groups would offer advantages over the en01 tosylate derivative. 

The reaction of the bicyclic keto ester(z)w trifluoronetianesulfonic anhydride in di- 

chloromethane at 0 On ti yielded the enol triflate (9). An attempted isolation of Q failed due to 

its instability. However, it was possible to react Q with 4b in the same solvent without isolat 

ior. to yield 5b in a & $ yield. Unfortunately, because of ir.stability of trifluoromethane- 

sulfonic anhydride, we found that this reaction was very difficult to control. On the other 

hand, the enol phosphate derivative10 satisfied all the requirements. This was easily made in 

acetonitrile from eitner dialkyl- or diarylchlorophosphate 13 using diisopropylethylaCne as a 

base14. Thus treatment of IO ( R=Ph and Et ) with& gave 5b ( 80 % and 39 $, respectively). 

The desired 5b crystallized from the reaction mixture as analytically pure material. This new 

methodology i.s amenable to large scale manipulation. 
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